Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
1.
BMC Microbiol ; 24(1): 110, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570789

RESUMO

BACKGROUND: All gastrointestinal pathogens, including Enterococcus faecalis and Enterococcus faecium, undergo adaptation processes during colonization and infection. In this study, we investigated by data-independent acquisition mass spectrometry (DIA-MS) two crucial adaptations of these two Enterococcus species at the proteome level. Firstly, we examined the adjustments to cope with bile acid concentrations at 0.05% that the pathogens encounter during a potential gallbladder infection. Therefore, we chose the primary bile acids cholic acid (CA) and chenodeoxycholic acid (CDCA) as well as the secondary bile acid deoxycholic acid (DCA), as these are the most prominent bile acids. Secondly, we investigated the adaptations from an aerobic to a microaerophilic environment, as encountered after oral-fecal infection, in the absence and presence of deoxycholic acid (DCA). RESULTS: Our findings showed similarities, but also species-specific variations in the response to the different bile acids. Both Enterococcus species showed an IC50 in the range of 0.01- 0.023% for DCA and CDCA in growth experiments and both species were resistant towards 0.05% CA. DCA and CDCA had a strong effect on down-expression of proteins involved in translation, transcription and replication in E. faecalis (424 down-expressed proteins with DCA, 376 down-expressed proteins with CDCA) and in E. faecium (362 down-expressed proteins with DCA, 391 down-expressed proteins with CDCA). Proteins commonly significantly altered in their expression in all bile acid treated samples were identified for both species and represent a "general bile acid response". Among these, various subunits of a V-type ATPase, different ABC-transporters, multi-drug transporters and proteins related to cell wall biogenesis were up-expressed in both species and thus seem to play an essential role in bile acid resistance. Most of the differentially expressed proteins were also identified when E. faecalis was incubated with low levels of DCA at microaerophilic conditions instead of aerobic conditions, indicating that adaptations to bile acids and to a microaerophilic atmosphere can occur simultaneously. CONCLUSIONS: Overall, these findings provide a detailed insight into the proteomic stress response of two Enterococcus species and help to understand the resistance potential and the stress-coping mechanisms of these important gastrointestinal bacteria.


Assuntos
Ácidos e Sais Biliares , Enterococcus faecium , Ácidos e Sais Biliares/farmacologia , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Enterococcus faecium/genética , Enterococcus faecium/metabolismo , Ácido Desoxicólico/farmacologia , Proteômica , Ácido Cólico , Ácido Quenodesoxicólico/metabolismo , Enterococcus
2.
Infect Control Hosp Epidemiol ; : 1-8, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38351873

RESUMO

OBJECTIVE: The number of hospitalized patients with severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) does not differentiate between patients admitted due to coronavirus disease 2019 (COVID-19) (ie, primary cases) and incidental SARS-CoV-2 infection (ie, incidental cases). We developed an adaptable method to distinguish primary cases from incidental cases upon hospital admission. DESIGN: Retrospective cohort study. SETTING: Data were obtained from 3 German tertiary-care hospitals. PATIENTS: The study included patients of all ages who tested positive for SARS-CoV-2 by a standard quantitative reverse-transcription polymerase chain reaction (RT-PCR) assay upon admission between January and June 2022. METHODS: We present 2 distinct models: (1) a point-of-care model that can be used shortly after admission based on a limited range of parameters and (2) a more extended point-of-care model based on parameters that are available within the first 24-48 hours after admission. We used regression and tree-based classification models with internal and external validation. RESULTS: In total, 1,150 patients were included (mean age, 49.5±28.5 years; 46% female; 40% primary cases). Both point-of-care models showed good discrimination with area under the curve (AUC) values of 0.80 and 0.87, respectively. As main predictors, we used admission diagnosis codes (ICD-10-GM), ward of admission, and for the extended model, we included viral load, need for oxygen, leucocyte count, and C-reactive protein. CONCLUSIONS: We propose 2 predictive algorithms based on routine clinical data that differentiate primary COVID-19 from incidental SARS-CoV-2 infection. These algorithms can provide a precise surveillance tool that can contribute to pandemic preparedness. They can easily be modified to be used in future pandemic, epidemic, and endemic situations all over the world.

3.
Antiviral Res ; 221: 105778, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38065245

RESUMO

The ongoing threat of COVID-19 has highlighted the need for effective prophylaxis and convenient therapies, especially for outpatient settings. We have previously developed highly potent single-domain (VHH) antibodies, also known as nanobodies, that target the Receptor Binding Domain (RBD) of the SARS-CoV-2 Spike protein and neutralize the Wuhan strain of the virus. In this study, we present a new generation of anti-RBD nanobodies with superior properties. The primary representative of this group, Re32D03, neutralizes Alpha to Delta as well as Omicron BA.2.75; other members neutralize, in addition, Omicron BA.1, BA.2, BA.4/5, and XBB.1. Crystal structures of RBD-nanobody complexes reveal how ACE2-binding is blocked and also explain the nanobodies' tolerance to immune escape mutations. Through the cryo-EM structure of the Ma16B06-BA.1 Spike complex, we demonstrated how a single nanobody molecule can neutralize a trimeric spike. We also describe a method for large-scale production of these nanobodies in Pichia pastoris, and for formulating them into aerosols. Exposing hamsters to these aerosols, before or even 24 h after infection with SARS-CoV-2, significantly reduced virus load, weight loss and pathogenicity. These results show the potential of aerosolized nanobodies for prophylaxis and therapy of coronavirus infections.


Assuntos
COVID-19 , Anticorpos de Domínio Único , Animais , Cricetinae , Humanos , SARS-CoV-2 , Aerossóis e Gotículas Respiratórios , Glicoproteína da Espícula de Coronavírus , Técnicas de Cultura de Células , Anticorpos Neutralizantes , Anticorpos Antivirais
4.
Geburtshilfe Frauenheilkd ; 83(12): 1431-1445, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38046526

RESUMO

Aim The AGG (Working Group for Obstetrics and Prenatal Diagnostics, Section Maternal Diseases) has issued these recommendations to improve the detection and management of Toxoplasma gondii infection in pregnancy. Methods Members of the Task Force developed the recommendations and statements presented here using recently published literature. The recommendations were adopted after a consensus process by members of the working group. Recommendations This article focuses on the epidemiology and pathophysiology of Toxoplasma gondii infection in pregnancy and includes recommendations for maternal and fetal diagnosis, transmission prophylaxis, therapy, prevention, screening, and peripartum management.

5.
Front Microbiol ; 14: 1247211, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38029072

RESUMO

In dynamic microbial ecosystems, bacterial communication is a relevant mechanism for interactions between different microbial species. When C. jejuni resides in the intestine of either avian or human hosts, it is exposed to diverse bacteria from the microbiome. This study aimed to reveal the influence of co-incubation with Enterococcus faecalis, Enterococcus faecium, or Staphylococcus aureus on the proteome of C. jejuni 81-176 using data-independent-acquisition mass spectrometry (DIA-MS). We compared the proteome profiles during co-incubation with the proteome profile in response to the bile acid deoxycholate (DCA) and investigated the impact of DCA on proteomic changes during co-incubation, as C. jejuni is exposed to both factors during colonization. We identified 1,375 proteins by DIA-MS, which is notably high, approaching the theoretical maximum of 1,645 proteins. S. aureus had the highest impact on the proteome of C. jejuni with 215 up-regulated and 230 down-regulated proteins. However, these numbers are still markedly lower than the 526 up-regulated and 516 down-regulated proteins during DCA exposure. We identified a subset of 54 significantly differentially expressed proteins that are shared after co-incubation with all three microbial species. These proteins were indicative of a common co-incubation response of C. jejuni. This common proteomic response partly overlapped with the DCA response; however, several proteins were specific to the co-incubation response. In the co-incubation experiment, we identified three membrane-interactive proteins among the top 20 up-regulated proteins. This finding suggests that the presence of other bacteria may contribute to increased adherence, e.g., to other bacteria but eventually also epithelial cells or abiotic surfaces. Furthermore, a conjugative transfer regulon protein was typically up-expressed during co-incubation. Exposure to both, co-incubation and DCA, demonstrated that the two stressors influenced each other, resulting in a unique synergistic proteomic response that differed from the response to each stimulus alone. Data are available via ProteomeXchange with identifier PXD046477.

6.
J Med Virol ; 95(10): e29122, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37787583

RESUMO

Despite recent advances in prophylactic vaccination, SARS-CoV-2 infections continue to cause significant morbidity. A better understanding of immune response differences between vaccinated individuals with and without later SARS-CoV-2 breakthrough infection is urgently needed. CoV-ADAPT is a prospective long-term study comparing humoral (anti-spike-RBD-IgG, neutralization capacity, avidity) and cellular (spike-induced T-cell interferon-γ [IFN-γ] release) immune responses in individuals vaccinated against SARS-CoV-2 at four different time points (three before and one after third vaccination). In this cohort study, 62 fully vaccinated individuals presented with SARS-CoV-2 breakthrough infections vs 151 without infection 3-7 months following third vaccination. Breakthrough infections significantly increased anti-spike-RBD-IgG (p < 0.01), but not spike-directed T-cell IFN-γ release (TC) or antibody avidity. Despite comparable surrogate neutralization indices, the functional neutralization capacity against SARS-CoV-2-assessed via a tissue culture-based assay-was significantly higher following breakthrough vs no breakthrough infection. Anti-spike-RBD-IgG and antibody avidity decreased with age (p < 0.01) and females showed higher anti-spike-RBD-IgG (p < 0.01), and a tendency towards higher antibody avidity (p = 0.051). The association between humoral and cellular immune responses previously reported at various time points was lost in subjects after breakthrough infections (p = 0.807). Finally, a machine-learning approach based on our large immunological dataset (a total of 49 variables) from different time points was unable to predict breakthrough infections (area under the curve: 0.55). In conclusion, distinct differences in humoral vs cellular immune responses in fully vaccinated individuals with or without breakthrough infection could be demonstrated. Breakthrough infections predominantly drive the humoral response without boosting the cellular component. Breakthrough infections could not be predicted based on immunological data, which indicates a superior role of environmental factors (e.g., virus exposure) in individualized risk assessment.


Assuntos
COVID-19 , Feminino , Humanos , SARS-CoV-2 , Infecções Irruptivas , Estudos de Coortes , Estudos Prospectivos , Interferon gama , Imunidade Celular , Imunoglobulina G , Anticorpos Antivirais , Vacinação , Imunidade Humoral
7.
iScience ; 26(10): 107786, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37731621

RESUMO

N4-hydroxycytidine (NHC), the active compound of the drug Molnupiravir, is incorporated into SARS-CoV-2 RNA, causing false base pairing. The desired result is an "error catastrophe," but this bears the risk of mutated virus progeny. To address this experimentally, we propagated the initial SARS-CoV-2 strain in the presence of NHC. Deep sequencing revealed numerous NHC-induced mutations and host-cell-adapted virus variants. The presence of the neutralizing nanobody Re5D06 selected for immune escape mutations, in particular p.E484K and p.F490S, which are key mutations of the Beta/Gamma and Omicron-XBB strains, respectively. With NHC treatment, nanobody resistance occurred two passages earlier than without. Thus, within the limitations of this purely in vitro study, we conclude that the combined action of Molnupiravir and a spike-neutralizing antagonist leads to the rapid emergence of escape mutants. We propose caution use and supervision when using Molnupiravir, especially when patients are still at risk of spreading virus.

8.
Front Microbiol ; 14: 1171651, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180246

RESUMO

Introduction: Although child morbidity and mortality could be reduced in Sub-Saharan Africa during the last years both remain high. Since neonatal infections play a major role, we conducted a cross-sectional pilot study in the lake region of Western Tanzania in order to analyze not only the prevalence of neonatal infection with its bacterial etiology including antimicrobial resistance pattern but also to detect potential maternal risk factors. Methods: We screened 156 women for potential risk factors and examined their neonates for clinical signs of an infection including microbiological verification. All women were interviewed for medical history and their socio-economic background. High-vaginal swabs (HVS) of pregnant women and blood cultures of sick infants were investigated for bacterial pathogens using culture followed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) or polymerase-chain-reaction (PCR)-based assays. Antimicrobial resistances were determined using a disk diffusion test and verified by VITEK 2. Maternal malaria, blood glucose, and hemoglobin levels were determined by rapid tests and helminth infections by stool microscopy. Results and discussion: Our results showed a prevalence of 22% for neonatal infections. In total, 57% of them had culture-positive bloodstream infections with Gram-negative bacteria being the most prevalent. All these expressed resistance against ampicillin. The prevalence of maternal infection with helminths or Plasmodium was low, indicating that anti-worming strategies and intermittent preventive treatment of malaria for pregnant women (IPTp) are effective. The study identified maternal urinary tract infection (UTI) and an elevated blood glucose level as potential maternal risk factors for early neonatal infection, an elevated blood glucose level, and maternal anemia for a late-onset infection. Conclusion: Our study, therefore, indicates that monitoring maternal UTI in the last trimester as well as levels of maternal hemoglobin and blood glucose might be important to predict and eventually manage neonatal infections. As Gram-negative bacteria with resistance to ampicillin were most prevalent in culture-proven neonatal sepsis, WHO recommendations for calculated antibiosis in the sick young infant should be discussed.

9.
J Med Case Rep ; 17(1): 121, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37013596

RESUMO

BACKGROUND: Congenital toxoplasmosis can be associated with serious clinical consequences from fetus to adulthood. Hence, early detection is required to minimize severe sequelae through appropriate therapy. We describe the first case of a congenital toxoplasmosis after maternal coinfection with Toxoplasma gondii and severe acute respiratory syndrome coronavirus 2 and the challenging serological diagnosis of the disease in this context. CASE PRESENTATION: A Caucasian boy was born at 27 weeks 2 days of gestation by cesarean section due to maternal COVID-19-related respiratory failure. Postpartum serological screening of the mother revealed a previously unrecognized active Toxoplasma gondii infection. The premature child initially tested negative for anti- Toxoplasma gondii immunoglobulin A and M antibodies 1, 2 and 4 weeks after birth, whereas immunoglobulin G antibodies were only weakly positive with no evidence of child-specific production. Neither neurological nor ophthalmological abnormalities were detected. Approximately 3 months after birth, serological testing indicated a congenital toxoplasmosis by presence of immunoglobulin A and M, in combination with a child-specific immunoglobulin G synthesis. Additionally, cerebrospinal fluid was tested positive for Toxoplasma gondii DNA. Although no clinical manifestations of congenital toxoplasmosis were detected, an antiparasitic therapy was initiated to minimize the risk of late sequelae. There were no hints for a transplacental transmission of severe acute respiratory syndrome coronavirus 2. CONCLUSION: This case raises the awareness of possible coinfections with the risk of transplacental transmission in cases of maternal coronavirus disease 2019. The report emphasizes the need for screening vulnerable patients for toxoplasmosis in general and especially in the context of pregnancy. It becomes evident that prematurity can complicate the serological diagnosis of congenital toxoplasmosis due to a delayed antibody response. Repeated testing is recommended to carefully monitor children at risk and especially those with a history of preterm birth.


Assuntos
COVID-19 , Coinfecção , Nascimento Prematuro , Toxoplasma , Toxoplasmose Congênita , Toxoplasmose , Masculino , Gravidez , Recém-Nascido , Humanos , Feminino , Toxoplasmose Congênita/diagnóstico , Toxoplasmose Congênita/prevenção & controle , SARS-CoV-2 , Cesárea , Imunoglobulina G , Imunoglobulina A , Imunoglobulina M
10.
Front Microbiol ; 14: 1152411, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077245

RESUMO

Diarrhea is the second leading cause of death mainly effecting young children. Often it is the result of fecal-oral pathogen transmission. We aimed to investigate whether monitoring the prevalence of Gram-negative bacteria on the hands of asymptomatic children is suitable as an indicator of fecal contamination of the environment in their playground. We compared the prevalence of Gram-negative bacteria on the hands of children, who live in the German city of Göttingen, an urban area in a high-income country, with the situation in Medan as an urban area and Siberut as a rural area both in the middle-income country Indonesia. A total of 511 children at the age of 3 months to 14 years were asked to put their thumb print on MacConkey agar, which was used to screen for the presence of Gram-negative bacteria. These were subsequently identified by using MALD-TOF mass spectrometry and classified into the order Enterobacterales, Pseudomonadales, and others. The highest burden of hand contamination was found in children from rural Siberut (66.7%) followed by children from urban Medan (53.9%), and from urban Göttingen (40.6%). In all three study sites, hand contamination was lower in the youngest (<1 year) and oldest age groups (10-14 years) and highest in the age group 5-9 years. Bacteria of the order Enterobacterales possibly indicating fecal contamination were most prevalent in Siberut (85.1%) followed by Medan (62.9%) and Göttingen (21.5%). Most facultative and obligate gastrointestinal pathogens such as Escherichia coli (n = 2) and Providencia rettgeri (n = 7), both being members of the order Enterobacterales, as well as Aeromonas caviae (n = 5), and Vibrio cholerae (n = 1) both belonging to other orders were nearly exclusively identified on the hands of children in Siberut. This result was not surprising, because hygienic conditions were lowest in Siberut. Only one isolate of A. caviae was found in Medan, and no facultative gastrointestinal pathogen was identified on the hands of children from Göttingen. Our pilot study therefore indicates that investigating hands of children for the prevalence of Gram-negative bacteria using selective media are a helpful method to monitor hygienic conditions, and thereby assess the risk for diarrhea-causing bacterial pathogens in the environment.

11.
Clin Drug Investig ; 43(4): 307-314, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37017874

RESUMO

BACKGROUND AND OBJECTIVE: Resistance to antibacterial substances is a huge and still emerging issue, especially with regard to Gram-negative bacteria and in critically ill patients. We report a study in six patients infected with extensively drug-resistant Gram-negative bacteria in a limited outbreak who were successfully managed with a quasi-continuous infusion of cefiderocol. METHODS: Patients were initially treated with prolonged infusions of cefiderocol over 3 h every 8 h, and the application mode was then switched to a quasi-continuous infusion of 2 g over 8 h, i.e. 6 g in 24 h. Therapeutic drug monitoring (TDM) was established using an in-house liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. RESULTS: Determined trough plasma concentrations were a median of 50.00 mg/L [95% confidence interval (CI) 27.20, 74.60] and steady-state plasma concentrations were a median of 90.96 mg/L [95% CI 37.80, 124]. No significant differences were detected with respect to acute kidney injury/continuous renal replacement therapy. Plasma concentrations determined from different modes of storage were almost equal when frozen or cooled, but markedly reduced when stored at room temperature. CONCLUSIONS: (Quasi) continuous application of cefiderocol 6 g/24 h in conjunction with TDM is a feasible mode of application; the sample for TDM should either be immediately analyzed, cooled, or frozen prior to analysis.


Assuntos
Monitoramento de Medicamentos , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida , Estudos de Viabilidade , Antibacterianos/uso terapêutico , Bactérias Gram-Negativas
12.
Front Microbiol ; 14: 1172707, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065145

RESUMO

As many gastro-intestinal pathogens, the majority of Clostridioides difficile strains express flagella together with a complete chemotaxis system. The resulting swimming motility is likely contributing to the colonization success of this important pathogen. In contrast to the well investigated general energy metabolism of C. difficile, little is known about the metabolic requirements for maintaining the ion motive force across the membrane, which in turn powers the flagellar motor. We studied here systematically the effect of various amino acids and carbohydrates on the swimming velocity of C. difficile using video microscopy in conjunction with a software based quantification of the swimming speed. Removal of individual amino acids from the medium identified proline and cysteine as the most important amino acids that power swimming motility. Glycine, which is as proline one of the few amino acids that are reduced in Stickland reactions, was not critical for swimming motility. This suggests that the ion motive force that powers the flagellar motor, is critically depending on proline reduction. A maximal and stable swimming motility was achieved with only four compounds, including the amino acids proline, cysteine and isoleucine together with a single, but interchangeable carbohydrate source such as glucose, succinate, mannose, ribose, pyruvate, trehalose, or ethanolamine. We expect that the identified "minimal motility medium" will be useful in future investigations on the flagellar motility and chemotactic behavior in C. difficile, particularly for the unambiguous identification of chemoattractants.

13.
Viruses ; 14(10)2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36298793

RESUMO

In SARS-CoV-2 diagnostics, cycle threshold (Ct) values from qRT-PCRs semi-quantitatively estimate a patient's viral load. However, relevant analytical differences between qRT-PCR assays are often neglected. This study was designed (i) to identify such differences between five commonly used assays and (ii) to demonstrate a straightforward strategy to harmonize them. QRT-PCRs for SARS-CoV-2 were carried out in 85 oropharyngeal swab samples using three fully automated (Alinity m, cobas®6800 and GeneXpert) and two semi-automated (genesig® and RIDA®GENE) assays. Qualitative results (positive/negative) showed excellent comparability between the fully automated assays, but not between the Alinity m and semi-automated methods. Ct values significantly varied between all the methods, with the median values ranging from 22.76 (Alinity m) to 30.89 (RIDA®GENE) and 31.50 (genesig®), indicating the lowest sensitivity for semi-automated methods. Passing-Bablok analysis further revealed systemic biases. Assay-specific viral load concentration calculations-based on generated individual standard curves-resulted in much better comparability between the assays. Applying these calculations, significant differences were no longer detectable. This study highlights relevant analytical differences between SARS-CoV-2 qRT-PCR assays, leading to divergent decisions about the mandatory isolation of infected individuals. Secondly, we propose a strategy to harmonize qRT-PCR assays to achieve better comparability. Our findings are of particular interest for laboratories utilizing different assays.


Assuntos
COVID-19 , Scrapie , Ovinos , Animais , Humanos , SARS-CoV-2/genética , Teste para COVID-19 , COVID-19/diagnóstico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sensibilidade e Especificidade
14.
iScience ; 25(5): 104293, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35492218

RESUMO

The nucleoside analog N4-hydroxycytidine (NHC) is the active metabolite of the prodrug molnupiravir, which has been approved for the treatment of COVID-19. SARS-CoV-2 incorporates NHC into its RNA, resulting in defective virus genomes. Likewise, inhibitors of dihydroorotate dehydrogenase (DHODH) reduce virus yield upon infection, by suppressing the cellular synthesis of pyrimidines. Here, we show that NHC and DHODH inhibitors strongly synergize in the inhibition of SARS-CoV-2 replication in vitro. We propose that the lack of available pyrimidine nucleotides upon DHODH inhibition increases the incorporation of NHC into nascent viral RNA. This concept is supported by the rescue of virus replication upon addition of pyrimidine nucleosides to the media. DHODH inhibitors increased the antiviral efficiency of molnupiravir not only in organoids of human lung, but also in Syrian Gold hamsters and in K18-hACE2 mice. Combining molnupiravir with DHODH inhibitors may thus improve available therapy options for COVID-19.

16.
Front Microbiol ; 13: 840846, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359708

RESUMO

Nosocomial infections with Clostridioides (Clostridium) difficile have become an emergent health threat. We sought to define risk factors for a C. difficile infection (CDI) beyond the widely known ones, such as antibiotic use and prior hospital stay. We therefore focused on a group of patients with diarrhea in order to identify risk factors for C. difficile infection among this symptomatic cohort. A total of 121 hospitalized patients from Seesen/Germany with diarrhea were included who submitted a stool sample and were interviewed about their socio-demographic background, lifestyle and state of health using a standardized questionnaire. Antibiotic potential of diuretics was examined by agar diffusion test. C. difficile was identified in 29 patients resulting in a prevalence of 24.0%. The infection was hospital-acquired in most cases (p < 0.001, 82.1%; n = 23/28, versus 29/91, 31.9%). The generally accepted risk factor previous antibiotic use was confirmed in this study (p = 0.002, n = 23/28 CDI patients, 82.1%, versus n = 44/91 non-CDI patients, 48.4%). The following additional risk factors were identified: regular consumption of proton pump inhibitors; PPI (p = 0.011, n = 24/29, 82.8% vs. n = 52/92, 56.5%), CDI patients ate less vegetables (p = 0.001, n = 12/29, 41.4% vs. 69/92, 75.0%). The intake of the diuretic agent torasemid in patients with CDI (p = 0.005, n = 18/29, 62.1%) was higher than in patients without (n = 30/92, 32.6%). More patients with CDI had to undergo a surgery in the previous year (p = 0.022, n = 13/29, 44.8% vs. n = 21/92, 22.8%) and held more birds (p = 0.056, n = 4/29, 13.8%) than individuals of the negative group (n = 3/92, 3.3%). In conclusion, although no antibiotic potential was detected in diuretics, especially torasemid seems to have significant influence for the occurrence of a CDI as well as a nutrition poor in vegetables. A diet rich in vegetables represented a fourfold lower risk for a CDI (OR 0.240, CI (0.0720 - 0.796]).

17.
Int J Infect Dis ; 119: 150-159, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35367354

RESUMO

BACKGROUND: Candidemia is rare and has a high mortality rate. This study analyses the impact of bedside antifungal stewardship (AFS) on clinical management and prognosis of patients with candidemia at a university hospital in Germany. METHODS: All patients with at least one positive blood culture with Candida species between 2014 and 2016 received bedside AFS with standardized recommendations. Medical records were retrospectively analyzed. Results from the intervention period from 2014-2016 (n=109), with focus on 2016 (n=39), were compared with those from the pre-intervention period in 2013 (n=30). RESULTS: Bedside AFS was performed in 24/35 (69%) surviving patients in 2016 within the first 3 days after diagnosis of candidemia. All surviving patients (n=35) in 2016 received antifungal treatment compared with 24/28 (86%) in 2013 (p=0.0344). Follow-up blood cultures were performed in 25/35 (71%) in 2016 compared with 10/25 (40%) in 2013 (p=0.0046). Survival in the intervention compared with the pre-intervention group did not differ significantly (p=0.58) one year after the diagnosis of candidemia was made. However, patients with candidemia often have multiple serious comorbidities. CONCLUSIONS: Individualized bedside AFS significantly improves adherence to recommendations for patients with Candida fungemia, especially guideline-oriented diagnostics and therapy. Improving the prognosis of patients with candidemia remains a huge challenge for AFS.


Assuntos
Candidemia , Doenças Transmissíveis , Fungemia , Antifúngicos/uso terapêutico , Candida , Candidemia/diagnóstico , Candidemia/tratamento farmacológico , Candidemia/microbiologia , Doenças Transmissíveis/tratamento farmacológico , Fungemia/diagnóstico , Fungemia/tratamento farmacológico , Humanos , Prognóstico , Estudos Retrospectivos
20.
Clin Case Rep ; 10(4): e05664, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35387284

RESUMO

The outcome of chronic meningitis depends to a large degree on the causative pathogen and the interval between onset of symptoms and diagnosis. We present a patient with a delayed diagnosis and several complications, for whom adequate therapy resulted in a favorable outcome. In a 76-year-old male patient, Candida albicans meningitis was diagnosed 4 months after the onset of symptoms. CSF findings (protein >1000 mg/L, predominance of intrathecal immunoglobulin A synthesis, lactate concentrations of approx. 10 mmol/L, leukocyte counts around 1000/µl, variable differential leukocyte counts) resembled tuberculous meningitis. In spite of the long interval without treatment, voriconazole 200 mg every 12 h for 7 weeks followed by fluconazole 300 mg/day maintenance therapy for 7 months led to a recovery with only mild deficits. The case illustrates that 1. C. albicans can cause chronic meningitis in patients without severe immune defects, 2. patients can survive C. albicans meningitis with mild long-term sequelae even when diagnosis and adequate treatment are delayed, and 3. voriconazole as a sole agent may be suitable for treatment of C. albicans meningitis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...